versão impressa ISSN 1806-3713versão On-line ISSN 1806-3756
J. bras. pneumol. vol.44 no.5 São Paulo set./out. 2018
http://dx.doi.org/10.1590/s1806-37562017000000172
A etiologia da lesão de isquemia-reperfusão (LIR) envolve primordialmente o aumento da formação de espécies reativas de oxigênio (ERO).1,2 A diminuição da oferta de oxigênio reduz a síntese e ressíntese de ATP, criando um gradiente iônico na membrana celular em razão da diminuição do transporte de cálcio ativo extracelular. O acúmulo de cálcio citoplasmático leva à ativação de uma protease que converte a xantina desidrogenase em xantina oxidase.3 Simultaneamente a esses eventos, há um acúmulo de AMP, que se decompõe em substâncias como adenosina, inosina e hipoxantina. Durante o processo de reperfusão, na presença de oxigênio, a xantina oxidase converte a hipoxantina em ERO, como radicais superóxido, peróxido e hidroxila.3,4 A liberação de ERO causa inflamação e apoptose celular como resposta de fase tardia da LIR.5
O azul de metileno (AM) evita a produção de ERO por atuar como um receptor alternativo de elétrons da xantina oxidase, competindo com o oxigênio molecular pela transferência de elétrons. Os elétrons são transferidos para o AM a partir do centro ferro-sulfúrico da xantina oxidase, evitando assim a conversão do oxigênio molecular em radicais superóxido.4
Anteriormente demonstramos que o AM foi capaz de reduzir os efeitos da LIR ao estudarmos pulmões transplantados de ratos.6 Alguns dos radicais livres, proteases e outros mediadores produzidos pela isquemia e reperfusão após transplante pulmonar unilateral são eliminados e liberados na corrente sanguínea, e os mediadores atingem o pulmão contralateral. Existem poucos estudos sobre o efeito da LIR após transplante pulmonar único sobre o pulmão não isquêmico.7
O objetivo do presente estudo foi avaliar os efeitos do AM como inibidor da LIR sobre pulmões direitos não isquêmicos após transplante pulmonar esquerdo em ratos.
Quarenta ratas Sprague-Dawley (300-350 g) foram utilizadas no presente estudo (20 doadoras/20 receptoras). As ratas receptoras foram divididas em dois grupos (n = 10) de acordo com o tratamento com solução salina (SAL) ou com AM, ou seja, grupo SAL e grupo AM. O estudo foi aprovado pelo comitê de ética em pesquisa de nossa instituição (CAPPesq Processo n. 3387/09/138) e realizado segundo o Guia de Tratamento e Uso de Animais de Laboratório.8
Os animais foram anestesiados com isoflurano a 5% (Isothane; Baxter, Jayuya, PR, EUA), intubados por via orotraqueal e ventilados mecanicamente (modelo 683; Harvard Apparatus, Holliston, MA, EUA) com volume de 10 ml/kg e frequência respiratória de 80 ciclos/min. A anestesia geral foi mantida com isoflurano a 2% (modelo Isovapor 1224; Takaoka, São Paulo, Brasil). Após laparotomia mediana, foram injetadas 500 U de heparina na veia cava inferior. Após um minuto, foi realizada esternotomia mediana, e a artéria pulmonar foi canulada para perfusão anterógrada com 20 ml de solução low-potassium dextran (LPD, dextrana com baixa concentração de potássio; Perfadex®; Vitrolife, Kungsbacka, Suécia) a 4°C com pressão constante (20 cmH2O). Antes da perfusão, a veia cava inferior foi seccionada para diminuir o retorno venoso, e o apêndice atrial esquerdo foi amputado para drenar a solução LPD. Os animais foram sacrificados por exsanguinação segundo a American Veterinary Medicine Association.9
Após a perfusão, a traqueia dos animais foi amarrada ao final do fluxo inspiratório, e o bloco cardiopulmonar foi extraído e colocado em uma placa de Petri com LPD fria para o back table (preparo do enxerto). O hilo esquerdo foi dissecado, e cuffs foram aplicados à artéria, veia e brônquio, conforme descrito anteriormente.10 Os enxertos foram mantidos insuflados durante a isquemia (3 h) e foram armazenados em LPD fria até o seu implante.
Os animais receptores foram anestesiados, intubados e ventilados conforme descrito acima. Imediatamente antes do implante do enxerto, os animais foram injetados por via intraperitoneal com 2 ml de SAL a 0.9% ou de AM a 1%. Então, foram colocados em decúbito lateral direito e submetidos a toracotomia esquerda no 4º espaço intercostal. Posteriormente, o implante do enxerto foi realizado com auxílio de microscópio estereoscópico (modelo SZ61; Olympus, Tóquio, Japão) com aumento de 8×.10 Resumidamente, o hilo esquerdo foi dissecado e ocluído o mais proximalmente possível. Então, o implante do enxerto foi realizado introduzindo-se os cuffs do enxerto em um pequeno orifício feito na parede ventral da artéria, veia e brônquio, respectivamente. Após a fixação dos cuffs com fio de sutura de seda de polipropileno 7-0, a pinça do brônquio foi aberto lentamente, e o fluxo de ar foi restabelecido. Na sequência, a pinça da veia foi removida para o estabelecimento da circulação retrógrada, e, por fim, a pinça da artéria foi aberta delicadamente, visando à perfusão suave do enxerto. O fechamento da incisão das receptoras foi realizado em camadas separadas, com fios de sutura de náilon monofilamentar 2-0. Após o término da cirurgia, os animais receberam analgesia (dipirona, 400 mg/kg) via gavagem e foram colocados sob ventilação espontânea em gaiolas individuais com livre acesso a água e comida.
Duas horas após a reperfusão do enxerto, os animais foram novamente anestesiados, intubados e colocados em ventilação mecânica, de acordo com os parâmetros mencionados anteriormente. Os animais foram submetidos a laparotomia exploratória e sacrificados por incisão da aorta abdominal anterior, com posterior extração do bloco cardiopulmonar. Em seguida, os blocos foram armazenados em solução de formaldeído a 4% por 24 h e posteriormente mantidos em solução de álcool etílico a 70% até a preparação das lâminas para análise histopatológica e imuno-histoquímica.
Ambos os pulmões foram fixados por instilação traqueal de solução de formaldeído a 4% (20 cmH2O) e armazenados por 24 h na mesma solução para análise histológica. Amostras de pulmão incluídas em parafina foram cortadas em seções de 5 µm e coradas com H&E. Utilizou-se histomorfometria pela técnica da contagem de pontos para quantificar células inflamatórias no parênquima pulmonar com grade de Weibel de 100 pontos e 50 linhas. Foram examinados dez campos microscópicos aleatórios e não coincidentes (aumento, 400×), totalizando 1.000 pontos por lâmina e cobrindo uma área de 62.500 µm2 por campo.11 A mesma metodologia foi utilizada para avaliar a expressão de intercellular adhesion molecule-1 (ICAM-1, molécula de adesão intercelular-1), caspase-3 e Bcl-2, que foram avaliadas por meio da análise de lâminas preparadas com um método imuno-histoquímico descrito por Almeida et al.12
Realizou-se análise descritiva para os dados quantitativos com distribuição normal, e os resultados foram expressos em média ± dp. A normalidade da distribuição dos dados e a homogeneidade das variâncias foram avaliadas, respectivamente, com o teste de Shapiro-Wilk e com o teste de Levene. O teste t foi utilizado para variáveis quantitativas dependentes. Considerou-se um erro tipo I de 0,05 (α) para todas as análises inferenciais.
Em relação às células inflamatórias no parênquima pulmonar, a contagem média de neutrófilos foi maior no grupo SAL em comparação com o grupo AM (5,2 ± 2,5% vs. 2,3 ± 0,8%; p = 0,04; Figura 1), da mesma forma que a expressão de ICAM-1 (4,7 ± 0,8% vs. 2,7 ± 0,7%; p ≤ 0,001; Figura 2) e de caspase-3 (4,4 ± 1,2% vs. 3,0 ± 1,3%; p ≤ 0,001; Figura 3). No entanto, a expressão de Bcl-2 no parênquima pulmonar foi maior no grupo AM em comparação com o grupo SAL (4,9 ± 1,9% vs. 2,5 ± 0,8%; p ≤ 0,001; Figura 4).
Figura 1 Infiltração de neutrófilos (%) no grupo solução salina (SAL) e no grupo azul de metileno (AM) após 3 h de isquemia fria, transplante e 2 h de reperfusão em pulmões não isquêmicos após transplante pulmonar unilateral esquerdo. p ≤ 0,001.
Figura 2 Atividade da intercellular adhesion molecule-1 (ICAM-1, molécula de adesão intercelular-1) no grupo solução salina (SAL) e no grupo azul de metileno (AM) após 3 h de isquemia fria, transplante e 2 h de reperfusão em pulmões não isquêmicos após transplante pulmonar unilateral esquerdo. p ≤ 0,001.
Figura 3 Atividade da caspase-3 (%) no grupo solução salina (SAL) e no grupo azul de metileno (AM) após 3 h de isquemia fria, transplante e 2 h de reperfusão em pulmões não isquêmicos após transplante pulmonar unilateral esquerdo. p ≤ 0,001.
Figura 4 Atividade da Bcl-2 (%) no grupo solução salina (SAL) e no grupo azul de metileno (AM) após 3 h de isquemia fria, transplante e 2 h de reperfusão em pulmões não isquêmicos após transplante pulmonar unilateral esquerdo. p ≤ 0,001.
Os dados sobre as comparações entre os pulmões não isquêmicos (pulmões direitos) e os enxertos (pulmões esquerdos) dos animais dos grupos SAL e AM são apresentados, respectivamente, nas Tabelas 1 e 2.
Tabela 1 Comparação do grau de inflamação e apoptose entre pulmões não isquêmicos e enxertos no grupo controle.
Variáveis | Enxerto (pulmão esquerdo) | Pulmão não isquêmico (pulmão direito) | p |
---|---|---|---|
Neutrófilos, % | 7,9 ± 2,0 | 5,2 ± 2,5 | ≤ 0,001 |
ICAM-1, % | 8,1 ± 2,1 | 4,7 ± 0,8 | ≤ 0,001 |
Caspase-3, % | 6,3 ± 2,9 | 4,4 ± 1,2 | ≤ 0,001 |
Bcl-2, % | 1,2 ± 0,9 | 2,5 ± 0,8 | ≤ 0,001 |
ICAM-1: intercellular adhesion molecule-1 (molécula de adesão intercelular-1).
Tabela 2 Comparação do grau de inflamação e apoptose entre pulmões não isquêmicos e enxertos no grupo azul de metileno.
Variáveis | Enxerto (pulmão esquerdo) | Pulmão não isquêmico (pulmão direito) | p |
---|---|---|---|
Neutrófilos, % | 4,4 ± 1,4 | 2,3 ± 0,8 | ≤ 0,001 |
ICAM-1, % | 5,1 ± 1,1 | 2,7 ± 0,7 | ≤ 0,001 |
Caspase-3, % | 5,7 ± 1,8 | 3,0 ± 1,3 | ≤ 0,001 |
Bcl-2, % | 2,2 ± 1,1 | 4,9 ± 1,9 | ≤ 0,001 |
ICAM-1: intercellular adhesion molecule-1 (molécula de adesão intercelular-1).
A LIR pulmonar ocorre em diversos casos, como na circulação extracorpórea, transplantes pulmonares e pós-enucleação de embolia pulmonar. Recentemente, muita atenção tem sido dada à disfunção pulmonar resultante da LIR pulmonar.13
A LIR pulmonar única pode levar a lesão semelhante, mas menos grave, no pulmão contralateral. Como a lesão no pulmão não isquêmico se desenvolve apenas após a reperfusão do pulmão isquêmico, a lesão provavelmente é mediada humoralmente.14 Em nosso estudo, foi possível confirmar essa observação, pois os pulmões nativos apresentaram menor expressão de marcadores inflamatórios e apoptóticos tanto entre os animais submetidos à instilação de AM quanto entre os animais do grupo controle.
A lesão pulmonar contralateral induzida por isquemia pulmonar unilateral e reperfusão é um fenômeno distinto e complicado, o qual ainda não é totalmente compreendido.15 Alguns autores estudaram a lesão de pulmões não isquêmicos após isquemia e reperfusão do pulmão esquerdo. Zhu et al.16 utilizaram a apocinina, um inibidor da NADPH oxidase, em ratos submetidos a 60 min de isquemia por oclusão do hilo pulmonar esquerdo seguidos por 30 min de reperfusão. Os autores observaram que as ERO produzidas pela isquemia afetaram o pulmão não isquêmico. Georgieva et al.17 concluíram que um órgão lesionado afeta um órgão remoto pela liberação de mediadores humorais em um modelo de isquemia e reperfusão semelhante ao do estudo de Zhu et al.16 Até onde sabemos, o presente estudo é o primeiro a avaliar esses efeitos sobre pulmões não isquêmicos após isquemia e reperfusão pulmonar induzida por transplante unilateral.
Em um estudo anterior,6 nosso grupo avaliou os efeitos do AM sobre os pulmões de ratos submetidos a transplante pulmonar unilateral. Da mesma forma que no presente estudo, o AM foi capaz de inibir a infiltração de neutrófilos de acordo com a avaliação histopatológica. Os achados de ambos os estudos mostram que o AM, por meio da inibição da produção de ERO, é capaz de reduzir a inflamação induzida pela LIR.
A apoptose é regulada por uma cascata de proteínas denominadas caspases, que são ativadas em eventos de isquemia e reperfusão. A isquemia e reperfusão pulmonar têm um efeito direto sobre as células pulmonares, e o aumento da atividade da caspase-3 refletiu um maior número de células apoptóticas.18
As vias de sinalização que levam à apoptose são mantidas por reguladores positivos e negativos. As proteínas que promovem a sobrevivência são as proteínas apoptóticas Bcl-2 e Bcl-xL.19 A liberação de ERO causa apoptose celular como resposta de fase tardia da LIR. O estresse oxidativo desencadeia a ativação da caspase-3, levando à apoptose celular. Além disso, o equilíbrio das proteínas anti e pró-apoptóticas responde dramaticamente às ERO.5 A diminuição da expressão de Bcl-2 e o aumento da expressão de caspase-3 no presente estudo são semelhantes aos encontrados por Abogresha et al.,5 que utilizaram a vitamina C como agente antioxidante, protegendo contra os efeitos da lesão pancreática após isquemia renal. Os achados do presente estudo mostram a indução de apoptose como resultado da LIR após transplante pulmonar e a capacidade do AM para inibir sua ocorrência.
As moléculas de adesão das células endoteliais parecem desempenhar um papel importante na LIR por causarem a adesão dos leucócitos às células endoteliais. A ICAM-1 é uma das moléculas de adesão que demonstraram ser reguladas positivamente em resposta às citocinas. Essa regulação positiva leva à adesão de leucócitos-células endoteliais e à infiltração de neutrófilos no tecido afetado. Meyer et al.20 realizaram 45 min de isquemia hepática seguidos por 5 h de reperfusão e mostraram uma significativa regulação positiva da ICAM-1 em órgãos distantes, como o coração, rim, intestino e pâncreas. No presente estudo, foi possível identificar maior expressão de ICAM-1 nos pulmões dos ratos do grupo SAL em comparação com os do grupo AM, bem como maior contagem de neutrófilos, o que representa um processo inflamatório menos intenso nos animais tratados com AM.
Como limitação do nosso estudo, podemos destacar que utilizamos a mesma dose de AM em todos os casos. O AM tem efeito dose-dependente, e um estudo com diferentes doses poderia ter produzido resultados diferentes dos encontrados no presente estudo. Além disso, a monitoração dos parâmetros hemodinâmicos, dos marcadores de perfusão tecidual e dos parâmetros ventilatórios pode ser útil para uma melhor compreensão da ação do AM.
Até onde sabemos, o presente estudo demonstra pela primeira vez que o AM é uma droga eficaz para a proteção de pulmões não isquêmicos contra inflamação e apoptose após transplante pulmonar unilateral em ratos.