versão impressa ISSN 0102-7638
Rev Bras Cir Cardiovasc vol.29 no.2 São José do Rio Preto abr/jun. 2014
http://dx.doi.org/10.5935/1678-9741.20140054
Abreviaturas, acrônimos & símbolos | |
---|---|
DNP | Dinitrofenol |
ADP | Difosfato de adenosina |
ATP | Trifosfato de adenosina |
VE | Ventrículo esquerdo |
Na década de 1960 Zimmerman et al.[1,2] descreveram lise maciça de cardiomiócitos após administração de cardioplegia com solução sem cálcio seguido por reperfusão com solução com concentração fisiológica de cálcio em coração isolado de ratos. A esse evento foi chamado "paradoxo do cálcio".
Diferentemente do que seria esperado, a ausência completa do cálcio não provocou somente a parada cardíaca, mas também alterou as membranas celulares dos miócitos cardíacos, culminando na fase de reperfusão com necrose dos mesmos, explicando o termo "paradoxo"[1].
Nos anos seguintes diversos pesquisadores estudaram possíveis mecanismos fisiológicos do paradoxo, culminando com expressiva quantidade de trabalhos sobre o assunto, sendo muitos apresentados em 1983, no IX Congresso Mundial da Sociedade de Pesquisa do Coração, realizado em Londres[3].
Nesse evento foi compilado muito do que se sabia na época a respeito da ausência do cálcio na solução cardioplégica, da lesão miocárdica extensa a que essa solução provoca e formas alternativas para a elaboração de uma cardioplegia hipocalcêmica segura[4-6].
Após quase 50 anos da descoberta desse paradoxo, este trabalho objetiva discutir alguns efeitos lesivos do paradoxo do cálcio no coração, considerando-se sua importância, mecanismos moleculares, alterações celulares ultraestruturais, ação lesiva aditiva ou protetora quando colocado em associação com outras soluções e algumas formas de evitá-lo.
Na década de 1980, o metabolismo do cálcio no coração foi bastante estudado. Nessa época, havia consenso sobre as consequências da sucessão de um meio sem cálcio seguido por outro repleto dele para a célula muscular cardíaca, que internaliza rapidamente esse íon, levando a mesma à citólise e o coração à insuficiência cardíaca. Esse fenômeno é semelhante à lesão de reperfusão[7].
Outro aspecto fundamental é o conhecimento sobre mecanismos envolvidos, pois soluções cardioplégicas não devem causar dano celular. Soluções cardioplégicas hipocalcêmicas são efetivas para induzir parada cardíaca[8]. Entretanto, substâncias que interrompam ou amenizem efeitos colaterais indesejáveis devem estar presentes para evitar disfunção ventricular após circulação extracorpórea[7].
Estudos sobre vias metabólicas que promovem ou interrompem o seu processo[9,10], assim como suas relações com insuficiência cardíaca[11,12] têm sido publicados, aos quais discorreremos brevemente a seguir.
Diversas hipóteses foram formuladas para explicar o paradoxo do cálcio como aumento da permeabilidade do cálcio no sarcolema[13], no glicocálix[14] e separação dos discos intercalares[15,16], porém nenhuma ainda esclareceu todo o mecanismo do paradoxo do cálcio.
É possível também que a hipercalcemia intracelular não seja causa primária do paradoxo do cálcio. Seu aumento pode ocorrer como consequência de dano no sarcolema acompanhado da entrada de quantidade moderada de cálcio para células estruturalmente alteradas[17].
A ausência isolada de cálcio pode provocar lesão celular, mas seu efeito deletério é potencializado em meios com anóxia, cafeína, 2,4-dinitrofenol (DNF), balão ventricular (distensão mecânica), etc. Todas essas condições causam lesões ao miocárdio mesmo na ausência de cálcio extracelular[18-22]. Outro mecanismo aceito é que o cálcio adentre a célula de maneira massiva, provocando lesão e morte celular[23].
A primeira descrição de mudanças estruturais no miócito perfundido em meio livre de cálcio foi realizada por Muir et al.[16], que verificaram alterações em discos intercalares e glicocálix de miócitos em corações isolados de ratos. Discos intercalares são estruturas complexas divididas em várias regiões, sendo a maior delas ocupada pela fascia adherens. Esses são os locais de maior tensão entre as células no momento da contração miocárdica. Junções desmossômicas, chamadas de macula adherens, estão presentes e servem para unir as células. Nexus ou gap junctions são pontos focais de contato celular íntimo, sendo locais de sinalização elétrica entre as células[24].
Muir et al.[16] notaram que miócitos cardíacos submetidos à perfusão sem cálcio apresentaram a partir de 30 minutos nítida separação nas regiões da fascia adherens e macula adherens, enquanto o nexus se mantinha intacto (Figura 1). Ashraf[13] e Yates & Dhalla[25] observaram mudanças similares em 10 a 15 minutos de exposição ao mesmo meio. Períodos mais curtos, como 3 a 5 minutos. geralmente não provocam separação física na ultraestrutura dos discos intercalares[23].
Fig. 1 Eletromicrografia de coração de rato após 12 minutos em perfusão sem cálcio em 37ºC. Os discos intercalares estão separados nas regiões da fascia adherens (FA) mas ainda estão interligadas pelas junções nexus (N). A lâmina externa do sarcolema (OL) ou glicocálix está destacado da membrana plasmática dos miócitos. Reproduzido de Ganote & Nayler, 1985[23]
O meio sem cálcio aumenta a quantidade de sódio intracelular tanto em cultura de miócitos como no coração isolado. Passando para um meio rico em cálcio, esse íon adentra rapidamente as células via bomba antiporte Na+/Ca+2, funcionando ao contrário. As semelhanças terminam aí, pois há contração do miócito em cultura, mas não citólise, enquanto que no coração isolado encontramos lise maciça das células. Esse fenômeno foi descrito como intolerância ao cálcio[26-28].
A citólise no momento que o miócito entra em contato com solução de reperfusão rica em cálcio após sensibilização em meio sem esse íon ocorre porque essas células têm somente discos intercalares conectando umas às outras, sendo que durante a contração há avulsão dos mesmos com exposição do meio intracelular de cada uma delas, explicando a morte celular maciça das mesmas[16].
Outra mudança que ocorre durante a perfusão sem cálcio é o destacamento do glicocálix, que geralmente é uma mudança focal que não é vista até 10 a 15 minutos após a infusão da solução sem cálcio. Frank et al.[29,30] mostraram que apesar da lâmina externa do glicocálix se destacar, há uma membrana mais interna que fica aderida na membrana celular.
Ashaf et al.[13] e Frank et al.[29] observaram agregação e rearranjo anômalos das moléculas constituintes da membrana celular quando colocadas em meio sem cálcio, fazendo com que haja dano celular irreversível devido à permeabilidade alterada de membrana. Os mecanismos moleculares dessas alterações ainda não são conhecidos.
Após 10-15 minutos em meio desprovido de cálcio, o miócito está sensibilizado, sendo estabelecida a separação dos discos intercalares entre as células[23]. Os sarcômeros de cada célula condensam em uma única banda de contração. As fascia adherens permanecem conectadas aos sarcômeros, mas estão completamente separadas das membranas das células adjacentes. Regiões de discos intercalares, localizadas entre as zonas de fascia adherens se tornam fragmentadas, permitem que mitocôndrias adentrem o espaço intercelular[31]. Ganote et al.[19] mencionam que a hipotermia evita a lise da fascia adherens e, por conseguinte, a citólise.
A contração do sarcômero e a necrose celular são idênticas àquelas observadas em outros tipos de lesão como necrose por catecolamina e lesão isquemia/reperfusão. Entretanto, deve ser enfatizado que a ultraestrutura celular quando em meio sem cálcio difere de todas as anteriores pela separação dos discos intercalares e presença de uma única banda central de contração[23].
Rebeyka et al.[32] constataram em modelo de circulação extracorpórea que corações de cães perfundidos com solução cardioplégica gelada sem cálcio apresentaram pior recuperação da função ventricular e maior área de necrose do que aqueles em que a solução tinha apenas 70µmol/L de cálcio, mostrando que mesmo concentrações pequenas de cálcio são suficientes para proteger o coração do paradoxo do cálcio.
A separação da lâmina externa do glicocálix da membrana celular do miócito ocorre após exposição da célula ao meio pobre em cálcio[23]. Frank et al.[14] cogitaram que essa separação seria responsável pelo aumento da permeabilidade do cálcio na membrana. Entretanto, Nayler et al.[17] utilizando 2 mM de cálcio no lugar do magnésio no período privado de cálcio demonstrou que apesar de ainda haver destacamento do glicocálix, não havia aumento da permeabilidade de membrana ao cálcio e Slade et al.[33] também já observaram que miócitos colocados em meio tampão sem cálcio também perdem o glicocálix, sem, contudo, haver alteração do influxo do íon cálcio.
Com a utilização da neuramidase há separação completa do glicocálix dos miócitos com aumento da permeabilidade celular ao cálcio. Para explicar esse fenômeno, Ganote et al.[23] postulam que nesse caso as glicoproteínas de membrana também seriam danificadas, perdendo o controle do fluxo de cálcio.
Ruigrok et al.[34] demonstraram que a liberação maciça de enzimas que ocorre na fase de reperfusão com cálcio é dependente de energia. Essa conclusão é baseada em experimentos que consumiam o ATP intracelular do miócito com perfusão anóxica ou na inclusão dessa célula em meio sem glicose. As células cardíacas não liberavam enzimas na fase de cálcio normal após 5 minutos de perfusão sem cálcio devido à depleção do ATP[34].
Baker & Hearse[35] observaram que o efeito dos bloqueadores dos canais de cálcio são melhor demonstrados quando há baixa concentração de cálcio no extracelular na reperfusão. Nessas condições, a entrada do cálcio acontece preferencialmente pelos canais lentos da membrana. A limitação dessa entrada permite a recuperação da lesão dos discos intercalares e do sarcolema. Em soluções com concentração fisiológica de cálcio na solução de reperfusão, os bloqueadores dos canais de cálcio oferecem pouca proteção para o paradoxo, sugerindo que mais de uma via seja importante para a entrada do cálcio na célula[36].
Dhalla et al.[37] mostraram que quando a concentração de sódio é reduzida para 35mM na fase sem cálcio, a magnitude da injúria tecidual é reduzida na fase de reperfusão com cálcio. Isso ocorre devido à baixa concentração do sódio, que lentifica a entrada do cálcio na membrana pela bomba antiporte Na+/Ca+2, facilitando o reequilíbrio iônico intracelular e prevenindo a contratura que levaria à morte celular[37].
Durante o período sem cálcio, a baixa concentração de sódio reduz o gradiente transmembrana e retarda o efluxo de cálcio e o influxo de sódio. Isso retardaria tanto a retirada do cálcio intracelular quanto a lesão celular provocada pela falta desse íon. No período com cálcio normal o sódio baixo também seria benéfico, pois reduz o influxo de cálcio via bomba antiporte Na+/Ca+2, funcionando ao contrário. A eliminação lenta de cálcio quando a célula está sem ele e a internalização mais lenta no período de reperfusão dá à célula condições de reestabelecer seu equilíbrio iônico antes de qualquer lesão estrutural[37].
Hipotermia protege o miócito do paradoxo do cálcio[38,39]. Ela previne a separação do disco intercalar e o destacamento do glicocálix[40]. Além disso, reduz a troca Na+/Ca+2, podendo diminuir a perda do íon Ca+2 no momento da perfusão sem cálcio[41]. A temperatura ideal encontrada para proteção miocárdica do paradoxo do cálcio foi 22ºC[42-44].
Ganote et al.[20] afirmam que quando corações isolados de ratos são colocados em anóxia em meio com concentração fisiológica de cálcio, a distensão do balão volumétrico em ventrículo esquerdo (VE) ocorre com pequeno aumento enzimático decorrente da lise celular, mas a distensão de VE é difícil. Quando o meio é livre de cálcio e normóxia, a distensão é fácil e também a liberação enzimática é pequena. Entretanto, quando temos anóxia e meio livre de cálcio, há liberação maciça de enzimas celulares.
Isso ocorre porque corações anóxicos conseguem suportar a tensão de parede que o balão imprime devido aos discos intercalares estarem íntegros. A distensão da cavidade ocorre por meio de elongação dos sarcômeros, com lesão dos mesmos. Em meio livre de cálcio e normóxia, as fibras musculares já estão relaxadas e a tensão produzida pelo balão não é suficiente para ocasionar avulsão de disco intercalar fragilizado. Mas, quando a anóxia e meio sem cálcio estão superpostos, a célula mantém a rigidez dos sarcômeros com a fragilidade dos discos intercalares. A pressão do balão insuflado lesa diretamente essa região, acarretando liberação de enzimas intracelulares[20].
O dinitrofenol (DNP) é um ácido lipossolúvel fraco que age como protonóforo (translocador de prótons), entra na mitocôndria com carga positiva e sai com carga negativa, criando transporte de elétrons para fora da mitocôndria, evitando a conversão do ADP em ATP[45]. Também provoca contratura ventricular rápida tanto em corações submetidos a meio livre de cálcio como naqueles com concentração normal desse íon. No entanto, naqueles em meio sem cálcio provoca lise celular maciça[22](Figura 2).
Fig. 2 Eletromicrografia de coração de rato após 5 minutos em perfusão sem cálcio, seguido de 15 minutos com adição de DNP ao primeiro perfusato. Os sarcômeros aqui estão contraídos, tracionando a fascia adherens (FA) e provocando lesão na membrana celular do miócito na região do nexus. O citosol está exteriorizado na forma de blebs (B) na região intercelular. Reproduzido de Ganote & Nayler, 1985[23]
Essa observação é consistente com a hipótese que contratura separa fisicamente as células, causando a lise celular naquelas em meio sem cálcio. O DNP por si só causa a contração das células, não sendo necessário adicionar cálcio ao meio. O cálcio intracelular presente nas mitocôndrias e sarcolema não seriam suficientes para gerar ambiente que simule meio com cálcio normal[22].
A cafeína provoca liberação do cálcio do sarcolema, mas não na mitocôndria[46]. Assim, o cálcio aumenta discretamente no intracelular, porém, sem sobrecarga do mesmo[31]. A contração persistente produzida pela cafeína é dependente do cálcio, sendo que em sua ausência há sustentação por apenas 20 a 30 segundos, seguida por relaxamento[18].
Corações perfundidos com solução com cafeína, mas sem cálcio a 22ºC não manifestam aumento de enzimas, mas aqueles que são mantidos a 37ºC apresentam lesão semelhante a do paradoxo do cálcio[18].
Considerando que o aumento da concentração de cálcio no intracelular não é expressivo, porque não houve reperfusão com cálcio, é improvável que a lesão seja originária de intoxicação por cálcio, mas sim por ação direta da contração ventricular no sarcolema[18].
Devemos temer o fenômeno conhecido como "paradoxo do cálcio", pois lesa irreversivelmente a membrana do miócito, provocando extrusão do conteúdo celular. Entretanto, apesar de seus mecanismos biomoleculares ainda não serem completamente conhecidos, medidas como hipotermia, hiponatremia e presença de traços de cálcio na solução de perfusão diminuem o risco dessa lesão, possibilitando a recuperação da função ventricular após parada cardíaca induzida.
Papéis & responsabilidades dos autores | |
---|---|
MABO | Autor principal |
ACB | Ajuda no levantamento bibliográfico e tradução artigos |
CAS | Ajuda no levantamento bibliográfico e tradução dos artigos |
PHHB | Ajuda na correção do manuscrito |
JLLC | Ajuda na correção do manuscrito |
GG | Co-orientador |
DMB | Orientador |